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LETTER TO THE EDITOR 

Temperley-Lieb words as valence-bond ground states 
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I Depamnent of Mathematics, Ausvalian Notional University. Canberra, ACT 0200, Australia 
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Abstract Based on the Templey-Lieb algebra we define n class of onedimensional 
Hamiltonians with nearest- and next-nenrest-neighbour interactions. Using the regular 
representation we present ground states of this model as wards of the algebra ?\vo-paint 
correhtion functions can be computed employing the Temperley-Lieb relations. Choosing a 
spin-; representation of the algebra we obtain a generalization of the (g-deformed) Majumdar- 
Ghosh model. The ground states become,valence-band states. 

In this letter we present a class of one-dimensional Hamiltonians H = H ( Q ,  b, q) with 
nearest- and next-nearest-neighbour interaction. The Hamiltonian is given in terms of 
elements of a Temperley-Lieb algebra [l] and has the structure of the Majnmdar-Ghosh 
model [2-6]. With specific representations of this algebra one obtains various 'quantum 
spin chains. The functions Q = h(q) and b = b(q) determine the next-nearest-neighbour 
interaction and can be chosen such that the ground state can be given explicitly. In a 
graphical form of the regular representation of the Temperley-Lieb algebra [7,S] these 
ground states have a particular simple form. They are related to valence-bond spin states. 
We also calculate correlation functions using the graphical representation. 

A Temperley-Lieb algebra TN(q) is defined by the following relations on the generators 
et, i = 1,2, . . . , N - 1: 

e;ei = xej = (q + q-')e; 
e;e;*lei = e ;  

eiej = ejei (j # i f 1). 
Here we consider the case where q is real. These algebras appear as centralizer algebras of 
the quantum group U,,SU(Z) [7,9]. Therefore, U,SU(Z) invariant models naturally show an 
underlying Temperley-Lieb structure. However, our results can be used for models having 
other quantum group symmetries as well [1&1'3]. 

We define the Hamilton operator as an abstract element of the Temperley-Lieb algebra. 
We use the two-point correlation operators defined in [SI. These operators preserve the 
quantum group symmetry of the respective representations of the Temperley-Lieb algebra. 
Two types of two-point operators can be defined by the recursive relations 

gf,r+l = g:+, = - (4  + q-')-' 1 < l < N - 1  

gm,i  * =  4 T 4 *  &.m 

(2) f = _ i f  i * - TI * 
gl,m 4 4 &.mg?" 1 < 1 m < N 

1 < 1  c m  < N .  

In the following we use only g& with 1 i m. Note that the definition is in terms of 
generators e] of T , ( q ) ,  independent of their realization. 
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We employ both gl,, and g;,, to define the Hamilton operator 

with 

h . .  ! . t+ i . t+~  . = 2gi.i+1+ z((xZ - 2)a(q) - I)gi+l.i+Z + a(q)(g$+Z + gi.i+z) 
+b(q)(&+z - SFi+z). (4) 

The operator hi.i+l,i+z acts on sites i, i+l, i+2 and involves the generators ei and ei+l. The 
value of x is given by the Temperley-Lieb relation (la). The arbitrary functions a = a(q) 
and b = b(q) are weighting factors of the symmetric and antisymmetric contribution of 

g:m = gc,,. It is useful to notice how the Hamiltonian changes if we replace q by I /q .  We 
have the identity 

gi,i+2 + and g,;+2 to the Hamiltonian. For q = 1 the Hamiltonian is independent of b since 

H"'(u, b, 4) H"'(u, -b. l/q). (5) 
The coefficients in (4) are chosen such that simple ground states can be found. To 

achieve this we use the regular representation of T , ( q )  on boundary diagrams [7]. We find 
the ground states to be specific Temperley-Lieb words. A word in this context means a 
straight product of generators and is realized by a single boundary diagram. 

A boundary diagram is given by two rows of N upper and N lower points with N 
non-intersecting lines connecting the points such that any point is connected to a single 
other point. A generator is realized as 

The composition of two words is defined as stacking the corresponding diagrams on top of 
each other and identifying the lower points of the first with the upper points of the second 
diagram. Any closed line appearing in this process is discarded from the diagram and 
replaced by a factor x = q + q-'. This reflects relation ( la) .  The other Temperley-Lieb 
relations (16) and (IC) can easily be verified by drawing the corresponding diagrams. By 
successive composition of generators (6) all distinct words of TN(q)  are realized as different 
boundary diagrams. Thus, for calculations in the regular representation of TN(q) we can 
take all possible boundary diagrams as a basis of the representation space. 

In the following we give eigenvectors and eigenvalues of H(". First, we take N even. 
Employing boundary diagrams it is straightforward to show that (3) has the eigenvector 

w LJ ' . .  w 
V I  =ele3 ... eN-1  = ~ (7) 

n n . . .  n 
The additive constant in (3) is chosen such that its eigenvalue is zero. 

If we impose a condition on the functions a(q) and b(q): 

a = (2 - x(q - q-')b) / (x2 - 1) 

we find two further eigenwords with eigenvalue zero: 
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and 

For an odd number of sites N and condition (8) we have two eigenwords that are 
given by diagram (IO) without the left or right vertical line. We denote these words as 
u4 = ele3 . . . eNi-2 and us = e2e4.. . eN-1 respectively. Their eigenvalues can be computed 
as +b/2 (q2 + q-')(q - q - ' ) ( q  + q-')-' for u4 and us respectively. 

For the following we impose condition (8). We ,investigate whether we can choose 
the function b(q) such that the eigenstates vi given above become ground states of the 
Hamiltonian H"). We can show that HcN) has a ground state ui if the function b(q) is 
bounded by 

The relation between the cases 1q1 > 1 and 141 .c 1 reflects the symmetry (5). 
For a proof, first .consider the case N even. One can think of H ( N )  as the sum of 

N / 2  - 1 Hamilton operators Hc4) each involving only three generators. This can be seen 
by grouping together hi,i+l,,+2 and hi+l.i+2.i+3 (i odd) in definition (3). The operator H(4) 
can be diagonalized (see below). Hence, the lowest eigenvalue of HcN) is bounded from 
below by N / 2  2 1 times the lowest eigenvalue of We take the 14 possible boundary 
diagrams with N = 4 as a baskto write Hc4) in the regular representation. Diagonalization 
of this 14 x 14 matrix gives the eigenvalues 

AI = O  
hz = 2 - (4 - q-')b(q)  

1 - I b  
1 3  = 1 - (4 - 4% + q -  1 

h5 = 1 - (q 5 + Zq3  - Zq-3 - ~7-~)(q' + 2q + a-' + q")-'b(q) 

(4) 
h4 = 1 - (2 - q-3)(q + q-')-'b(q) 

1 
2 

h 6 ~  = I - - (q3 + 2q + 24-' + q-')-'[(q5 + 2q3 + q - q-' - 2q-' - q-5)b(q) 
3z[(ql0 + 6q6 - 2q4 + q2 - 12 + q-' - 2q4 + 6q-6 + q- 10 )b 2 (4) 

-8(q4+q2-q-2-q-4)b(q)+4(4i -q- ' )21i l .  

The degeneracy of the first eigenvalue is seven and of the second two. The others are non- 
degenerate. From this result we can conclude that, if we have equation (ll), all eigenvalues 
of HC4) are greater or equal to zero. Hence, for functions b(q)  that fulfil conditions (8) and 
(I I) ,  U J  , u2 and u3 are ground states of the Hamiltonian HcN)  because their eigenvalue is 
zero. 

For N odd we can analogously view H ( N )  as the sum of ( N  - 3 ) / 2  operators H") and 
one operator H(3) .  Making use of the five different boundary diagrams for N = 3 we find 

. .  
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the eigenvalues of H(3)  are 

b(q) z p ]  = 1 - -(q - 4-21 
2 

The eigenvalues p2 and p3 are twofold degenerate while p1 is non-degenerate. If we 
impose condition (1 l), p1 is always positive. Note that for (8) the values p2 and p3 are 
also eigenvalues of with eigenvector u4 and us respectively. Thus, imposing both 
conditions (8) and (11) a ground state of H'" is given by u4 or us depending on the values 
of q and b. Explicitly, for 141 > 1 and b < 0 (b 0) we have v4 (us) as the ground state 
of 

If we drop condition (S), ui remains the eigenstate of H c N )  for N even. For this case 
we wish to remark that one can choose two functions a(q) and b(q) within certain bounds 
to make U ]  a ground state of the Hamiltonian. 

Next, we calculate correlation functions for the ground states u1 and UZ. Again, the 
computation is completely general in terms of boundary diagrams. 

For a graphical calculation of the correlation functions we have to restrict our attention 
to the words of the left-sided ideal that is generated by ut = eIe3.. . e N - 1  (N even). The 
diagrams with a lower part as in U; and an arbitrary upper part constitute the ideal S. Thus, 
the ground states uj and u2 belong to S. 

Defining a transposed diagram as the up-side-down reflected diagram, the scalar product 
( S I  ISZ) of two elements si and sz of S can be defined as follows [SI. If one removes any 
loop from the diagram representing srTs2, the resulting diagram is always V I  with a factor 
depending on si and SZ. The scalar product is given by this factor: 

For 141 < 1 and b < 0 (b  > 0) we find the ground state vs (uq). 

. 

U U " '  U 

SITS2 = (31 Isz) (12) 
n n .. .  n 

For example, it is easy to see that 
( U l l U l )  = (uzIv2) = x  N / Z ,  

n u s ,  we can calculate the expectation value of the correlation operators g t n  fbr a state u 
in S. We evaluate the diagrams 

U U ' . '  U 

(14) T *  
U = (4gr.mlv) 

n n ...  n 
using the recurrence relation (2) expressed in terms of diagrams. By induction on k we can 
show that the correlation functions for the states V I  and U* for all N are given by 

I ( x  - l / X ) X N / *  for i = 1, k = 1 and 1 odd . .  
for i = 2, k = 1 and 1 even 
and for i  = 2, I = 1 , l + k  = N 
otherwise. 

(viI&+kIUi) = 

Thus, only sites connected by an upper line in u1/2 have a non-zero correlation. 
Note that we find trivial short-range correlations, although the operators g& have a 

non-local structure (2). The ground states do not have any long-range order. This can be 
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expected from the interpretation of the words U] and vz in terms of spins that we give in 
the following paragraph for the representation (16) with spin 4. 

So far we have used the regular representation of the Temperley-Lieb algebra 
producing results independent of special representations. We now take the U,,SU(2) spin-; 
representation of TN(~) that is defined by [8,9] 

where us, UY and uz are Pauli mahices. For this representation the g& (2) are UqSU(2) 
invariant generalizations of the SU(2) invariant scalar product [SI 

(17) q=1 I gf,m = -101 . Cm. 
The resulting Hamiltonian H ( N )  is UJU(2) invariant. We wish to b o w  the spin 

configuration states that correspond to the boundary diagrams ui, i.e. the ground states of 
this quantum chain for conditions (8) and (11). To achieve this consider the special case 

b(q) = 0 and a(q) = 2/(x2 - 2). (18) 
With the chosen representation and this condition HCN) becomes the Hamiltonian of the 
q-deformed Majumdar-Ghosh model [2,6] 

where P::i,,i+2 'is the projector onto the (q-deformed) quartet of the spins at sites i, i + 1 
andi+2.  . ,  

The Majumdar-Ghosh model is known to have a valence-bond ground state [3,4,6]. 
Denoting the spin-$ representation space of a site by a dot, and a singlet combination of 
two adjacent spins by a short line, they can be given pictorially as 

(20) w , = ~  w H H . . .  w 

w*=, 0 w H . . *  H 0 (21) 
for an even number of sites. For N odd the ground state has the form of (21) without the 
dot to the very left or very right. 

One can easily verify that W I  and wz are, in fact, ground states. The action of any 
P:{:l,i+2 on either of these states gives zero since two of~the three spins of sites i, i + 1 
and i + 2 are in a singlet configuration. Thus, both states are eigenvectors of HMG with 
zero eigenvalue. Also, all possible eigenvalues of HMG are greater or equal to zero because 
it is a sum of projectors. 

Alternatively, we have the ground states u I ,  u2 and y (respectively u4 or us for N odd), 
where u1 and u2 belong to the ideal S. For representation (16). S is known to represent the 
UqSU(2) scalar states [7,8]. 

At this point the correspondence between the diagrams vi and spin configurations wj 
becomes clear. A line connecting two upper points in a boundary diagram is represented by 
the singlet configuration of the spins at the comesponding sites. 'For this identification one 
can easily show that the action of the Temperley-Lieb algebra on a diagram of S is mirrored 
by the action of matrices (16) on thematching spin state. In this way the two words V I  and 
u2 are represented by the two UySU(2)  ground-state singlets W I  and w2 repectively (with 
the spins of sites 1 and N in the singlet combination). The correct normalization, of the 
spin states can be calculated from (13). Further analysing the action of T , ( q ) ,  we find that 
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the word v3 corresponds to a linear combination of the ground-state triplet and the singlet 
that are both pictorially described by &. Finally, for N odd, v4 and vs correspond to w? 
without the left and right dot respectively. 

Recently generalizations of the Majumdar-Ghosh model have been discussed. A class 
of SU(2)  symmetric antiferromagnetic chains with valence-bond ground state can be found 
in 1151. Takano has introduced a generalization of the projection operators which appear 
in the formulation of the Majumdar-Ghosh model [16]. A q-deformation of the SU(2) 
symmetric model has been given in 161. With representation (16) the class of Hamiltonians 
HCN) is an extension of the latter U,,SU(Z) symmetric Majumdar-Ghosh chain. Note that 
the valence-bond ground states remain unchanged for a range of functions a(q) and b(q) .  A 
similar phenomenon has already been found for a spin-1 chain with matrix-product ground 
state [17]. We have not investigated whether our Hamiltonian is massless or not [5].  

Choosing a different representation we can define further models with the same property. 
It is possible to represent a Temperley-Lieb algebra on quantum chains with n = 2r + 1 
states per site. Such a representation of T , ( q )  is given through the matrix elements [ I l l  

(22) (ni,mi+llei[mj,m! 1+1 ) = (-l)"'-":p"+'; L + m , + l . o ~ m : + m ~ + ,  .O 

q + q-' = x = [ E l r  = (p" - p-")(p  - p 

where mi is the spin variable at site i with --s < mi < s. The value of p can be calculated 
from 

(23) 
For s = 112 this reduces to the representation given in (16). The resulting Hamiltonians 
H ( N )  are U,,SU(n) symmetric [ll, 121. In general the matrices (22) realize the projector 
onto the U,,SU(n) singlet at two adjacent sites [lo, 111 which is realized via the branching 
rule 

-1 --I ) . 

n x ii = (2- 1 ) +  1.  (24) 
Thus, even for s > l j 2  the ground state is of valence-bond type. For example, we can 
expect the ground state of the UpSL1(3) symmetric model to be tenfold degenerate (one 
octet and two singlets). 

We have given the correspondence between specific words of the Temperley-Lieb 
algebra and vectors of the spin-; configuration space. The general relation of words of 
TN(q) and spin states will be discussed in a future publication. 

We would like to thank V Rittenberg for suggesting the problem. 
M T Batchelor and F H L EBler for many helpful discussions. 

Thanks also to 
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